

COMPRESSOR DATA SHEET

In Accordance with Federal Uniform Test Method for Certain Lubricated Air Compressors Rotary Compressor: Fixed Speed

MODEL DATA - FOR COMPRESSED AIR						
1	Manufacturer: FS Curtis					
	Model Number: NxHE160A-100	Date:	6/19/2018			
2	X Air-cooled Water-cooled	Type:	Screw			
		# of Stages:	2			
3*	Rated Capacity at Full Load Operating Pressure a, e	1193.4	acfm ^{a,e}			
4*	Full Load Operating Pressure b	100	b psig			
5	Maximum Full Flow Operating Pressure ^c	101	psig			
6	Drive Motor Nominal Rating	220	hp			
7	Drive Motor Nominal Efficiency	96.2	percent			
8	Fan Motor Nominal Rating (if applicable)	7.5	hp			
9	Fan Motor Nominal Efficiency	91	percent			
10*	Total Package Input Power at Zero Flow ^e	78.5	kW ^e			
11	Total Package Input Power at Rated Capacity and Full Load Operating Pressure ^d	188.0	kW^d			
12*	Package Specific Power at Rated Capacity and Full Load Operating Pressure e	15.8	kW/100 cfm ^e			
13	Isentropic Efficiency	84.36	Percent			

Consult CAGI website for a list of participants in the third party verification program:

www.cagi.org

NOTES:

- a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex C; ACFM is actual cubic feet per minute at inlet conditions.
- b. The operating pressure at which the Capacity (Item 3) and Electrical Consumption (Item 11) were measured for this data sheet
- c. Maximum pressure attainable at full flow, usually the unload pressure setting for load/no load control or the
 maximum pressure attainable before capacity control begins. May require additional power.
- d. Total package input power at other than reported operating points will vary with control strategy.
- e. Tolerance is specified in ISO 1217, Annex C, as shown in table below:

NOTE: The terms "power" and "energy" are synonymous for purposes of this docum

NOTE: The terms "power" and "energy" are synonymous for purposes of this document.							
	Volume Flow Rate at specified conditions	Volume Flow Rate	Specific Energy Consumption	Zero Flow Power			
m³/min	ft ³ / min	%	%	%			
Below 0.5	Below 17.6	+/- 7	+/- 8				
0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%			
1.5 to 15	53 to 529.7	+/- 5	+/- 6	+/- 10%			
Above 15	Above 529.7	+/- 4	+/- 5				

Member

ROT 030.1

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

^{*}For models that are tested in the CAGI Performance Verification Program, these items are verified by the third party administrator.